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A model of a continuum is constructed, using the variational equation suggested 
in [l, 21 which makes it possible to obtain models of continua using a minimum 

number of unified physical hypotheses. In the present paper the variational equa- 

tion is used to obtain a system of equations defining the macroscopic motion of 
a continuum with polarization and magnetization effects taken into account I 
within the framework of the special relativity theory, Use of the four-dimen- 

sional space-time and special relativity theory is required in order to match 
theories of electromagnetism and mechanics. We investigate some of the con- 
sequences of two possible decompositions of the total energy-momentum tensor 
of the electromagnetic field and the continuum into the continuum energy- 
momentum tensor and the electromagnetic field ener~-momentum tensor accor- 
ding to Minkowski and to Abraham,respectively, When moment stresses and 
external mass moments are absent in the medium, we assume the symmetry of 
the total energy-momentum tensor of electromagnetic field and medium (this 
is equivalent to the absence or constancy of the combined electromagnetic 
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field and medium, intrinsic internal moments of momenta along the world lines) 
and on this assumption consider certain models of continua. 

1, 8 L 8 i C 8 4 U1 t 10 PI 8 a As the basis for obtaining a consistent system of equations 
comprising the Maxwell equations and the equations of continuum mechanics, we use the 
variational equation in the form [I, 23 

where V, denotes an arbitrary four-dimensional volume of the pseudo-Euclidean Min- 
kowski space-time, whose volume element 

dr4 f=(: ‘I/~gd~ldx2d~3d~4, g = det 11 gijJ[ 

Here A is a Lagrange function which is a four-dimensional scalar, 6W* is a function- 

al specified below, 6W is a functional which is determined by specifying A and SW: 
and gij are the covariant components of the metric tensor of the observer’s inertial co- 
ordinate system in a fog-dime~ional judo-Euclidean space. Further, as the four- 

dimensional Cartesian coordinate system we choose a coordinate system with the metric 
d.9 = -(d+ - (dx2)2 - (d~?)~ + c2dt2 where c is the speed of light in vacua 
and ds is an element of the arc length in the four-dimensional pseudo-Euclideanspace. 

Unless otherwise stated, here and in the following, the lower case Italics indices assume 
the values 1, 2, 3, 4,the lower case Greek letter indices assume the values 1, 2, 3 and 
summation is perfermed over identical upper and lower indices, 

let us specify the total Lagrangian f! of the electromagnetic fieId and continuous 

medium, in the following form : 

A=-- --&- F’k‘Fik -t_ + F~~~~k - PU (P, Zij, ?dii, g+ Sp KB) fl.21 

Here x$ = &ni (E’) / @: xi = xi (gk) is the law of motion of the medium, while gl;l, 
p, E3, ~$4 = z are the coordinates of points of the medium in a coordinate system fro- 

zen into the continuous medium and moving with it. /Jn what follows this system is 
called “intrinsic”]. In this coordinate system the metric is determined by 

df = gi;dEidEi, g4 = gij (EL) 

The superscript A denotes tensor components relative to the coordinate system and Fik 
denote covariant components of the fog-dime~ional tensor of an electromagnetic field 
in the medium. These components are connected with the com~nents of the four- 
dimensional vector potential A k by the formulas 

Fik = ViAk - VkAi 

where V k is the covariant differentiation operator in the observer’s coordinate SyStem , 
Pij denote the components of the polarization-magnetization tensor computed for a 

unit volume of the medium, nii = p-lPii by definition, where nii are the compon- 
ents of the polarization-magnetization tensor computed for a unit mass of the medium 

and p is the medium mass density defined by the formula 
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Here uy are the covariant components of the four-velocity vector of the medium rela- 
tive to the observer’s coordinate system computed in the comoving coordinate system 
(the four-velocity vector is determined in the inertial coordinate system by its compo- 

nents ui = (dXi~ild.t)~k=const) , 5 is the entropy per unit mass of the medium and U is 

the internal energy of a unit mass of the medium. 
let us introduce the quantity oe denoting the medium free electrical charge density 

P6 = cp (Ep) ldet i ga^p - && //l-‘/s 0.4) 

In accordance with the definition of the free electrical charge density and of the four= 

velocity vector of the medium, the quantity peua represents the electric current asso- 
ciated with the motion of the continuum relative to the observer’s coor#inate system, 

In accomace with the definition (1.3) of the mass density p and the definition (1.4) 

of the free electrical charge density pa of the medium, the scalars p and f& satisfy, in 
the observer’s coordinate system, the four-dimensional equations of continuity 

vi (PUi) = 0, vi (p,u’) = 0 

In the Iagrangian (1.2) the fog-dime~ional invariant - (~6~)-~~~~~~j is the 
Lagrangian of the electromagnetic field and the term 1/2 Fi jPij determines the inter- 
action between the electromagnetic field in the medium and the medium’s polarization 
and magnetization intensity. 

Let us determine the variations of the defining parameters of the model consistent 

with the definitions of variations adopted in [l, 21. (The vector and tensor variations 
introduced below are transformed from one coordinate system to the other by the same 
laws which govern the transformation of respective vectors and tensors undergoing varia- 

tions) 
6x1 = xi’ (E”) - 5s (EL) 
6A k = A k’ (Ek> - Ak (Ek> 
jjnij = ni~’ gk) _ +i (g”) 

BS = S’ (E”) - s @) 

In this case variations of the remaining quantities appearing in the basic variational 
equation (1.1) are expressed in terms of parameter variations introduced above by the 

following relations : 
6Fil =r- Vi&AI - Vj6Ai - VkAj V$Xk -F VkAi VjaXk 

Cgxji =: xcjs V,Gxi 

&Q =r- gk~juivi~xk 

6p :c- -pgpv,Sx” 

dpij -r p6+j - Pi' gk*SVsGxx 

6dT~ =3 ClT,V i6Xi 
g*ii = gif _ uiui 

The raising and lowering of indices is performed everywhere with the use of the metric 

tensor of the observer’s coordinate system with the covariant components gij, and Kn(@) 
are the physical constants which define properties of the medium (such as anisotropy, 

dielectric ~rneabil~~, etc. ). 
We further assume that 6Kn = 0. The functional 6 W* is chosen in the form 
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6W* = 1 {pTGS + j”CiAk + j”AiVkGX’ - Fi6xi] C!T, 
V4 

jk = i" + P~U' 

where j” are the contravariant components of the four-dimensional electric field vec- 

tor and ia are the components of the electrical conduction current. 
The form of the functional 6W* was specified on the following considerations. 

1’. The functional 8W* must include terms representing the work done by the 

volume forces F, over possible displacements which are outside the system electro- 
magnetic field-medium. This work is defined by the term P,6r” which in 6W* appears 
with a minus sign. The reason for the minus sign there is that vector components in the 

four-dimensional pseudo-Euclidean Minkowski space, for which we shall use the notation 

(- - - +) with the metric given above, are related to those in the three-dimensional 
space in the case when the coordinate system is Cartesian, by the following expressions 

(the notation (--I- + $) means that the vector components are computed relative to a 

coordinate system in a three-dimensional Euclidean space) : 

F;_ c _ +) = Fa(+++) = - Fat---+, 

and consequently 
F a l-i-++) 6x= = - F at----_+) 6X= 

Moreover we shall assume that the external (relative to the system electromagnetic 

field-medium) mass mements are absent (otherwise the expression for 6W* would 
have to contain a term representing the work done by the external mass moments on the 

possible rotations). The three- and four-dimensional components of the vector Ak have 
the same properties. 

2O. The functional 6W* includes the term F,6x4, representing a possible external 
flux of energy other than heat, to the system electromagnetic field-medium. The ex- 
pression for 6~* also includes electric current terms which depend on the magnitude 
of the uncompensated heat increment dQ’ due to the dissipation effects. 

Performing the variations in (1.1). taking into account (in accordance with (1.2)) the 
assumption made about the arguments of the internal energy and assuming that the vari- 
ations 6Ai, &ii, 6s and 6x’ are independent, we obtain Euler equations in the form 
of Maxwell equations for the electromagnetic field within the medium 

V,H”! = &jk 
(1.5) 

Hii = ];iJ _ &pi] 
1 

equations of state for the electromagnetic field in the medium and the temperature 

T:= g 
(1.6) 

and equations of momentum 
(1.7) 

In the observer’s coordinate system the following formulas representing the general- 
ized equations of state are valid for the components of the total energy-momentum 
tensor of the svstem field-medium (1.8) 
pi” = si” _ + F,,PPQik + L F,,/‘“~~~” + p “li au 

2 aczj 
Xjk - (3’ F g:” -+ f3UUiUk 
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8; = - & (HkPF,, - -& HPqFppC;i”) 

Here the derivarive d / dXji id taken with respect to the arguments Xj’ appearing in 

the expression for the internal energy independently of the density p, and &” are com- 

ponents of the energy-momenr~ tensor of the electromagnetic field in the Minkowski 

space. 
Computations made in the process of varying (1.1) show that in the region of conti- 

nuous motions the following formula holds for the functional 9?V: 

6W = SI p,ksk+ &- Hki (6Ai + ApVi6XP)} n, da, 
& 

where IZ~ is the four-dimensional unit vector normal to the three-dimensional surface 

2 a bounding the volume V,. 

The system (1.5) - (1.8) is established on the assumption that the internal irreversible 
effects determined by the expression for functional 8W*, depend only on the presence 
of the electric current. When irreversible effects produced, e. g. by the irreversibility of 

the process of medium deformation or by the irreversibility of the magnetization process 

are considered, it is necessary to include in the expression for 6 W* additional terms 
describing these effects. To &se the derived system of equations we must introduce a 

relation representing the Ohm’s law or its generalization which, e, g., for an isotropic 

medium, may have the form .L 
L EZZ - oFkilL; + ~~kp~~iU~ 

where CT is the coefficient of electrical conductivity of the medium and a is a coeffic 

cient determining the Hall effect. 

a, The elactromag~etfc field energy-momentum tsnIor and the 
pond6romot~ya foreor, We adopt, after Mi~ow~i, the following definition for 
the components of the ponderomotive force vector 

F,“L = - Vj@ (2.1) 

In this case the tensor components of the four-dimensional ponderomotive volume mo- 
mentum excercised by the electromagnetic field on the medium are given by [1] 

hii = - (&% _ $i) (2‘2) 

In the four-dimensional Cartesian coordinate system with the metric given above we 
have saa = s,@, 94=--5.4 andS4Q=- ~a., We also note that all relations 

obtained in Sect, 2 are valid oily in the in~i~sic’~ordinate system, by which we under- 
stand the inertial coordinate system, and are chosen for each point M (51, E’, 5”) of the 
moving continuum so that at each instant of time t the three-dimensional velocity 1’ 
of the point M is equal to zero in that coordinate system. 

As we know [l, 37 the Minkowski electromagnetic field energy-momentum tensor 
and the Abraham ener~-momentum tensor are linked, in the Cartesian inertial coordi- 
nate system relative to which the medium is at rest, by the following formulas : 

A”@ zzz -& (&p Jr &p) (2.3) 

Aa4 = A4= = s4'" 
I 

A44 __$44 
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from which it follows that the energy fluxes from the electromagnetic field to the me- 
dium computed in accordance with both. the Mittkowski and the Abraham hypotheses (I 
are the same 

FA4 = FM4 (2.4) 

For the components of the ponderomotive force tensor we assume, in accordance with 

the Abraham hy~th~is, that 
12.5) 

Then from (2.1) and (2.5) it follows that in the Cartesian coordinate system the follow- 

ing relations are valid : 
FAN = FM= -$,&‘j_+&ha4 

where the derivative with respect to time is taken in the intrinsic coordinate system. 
The formula defines the relation between components of vectors of the ponderomotive 

body force computed in accordance with the Abraham and Minkowski hypotheses. 
As we already indicated, we shall further consider the models of media in the case 

when 
@, J@, p, gij, s, K* 

are used as the internal energy arguments. If we assume that the combined energy- 

momentum tensor of the medium and field is symmetric, i.e. 

pik = pki (2.6) 

then the stated condition is equivalent to the four-dimensional momentum equation 
being identically satisfied under the condition that the sums of the characteristic intrin- 

sic internal moments of the field and the medium are constant, or vanish along the 
world line. This does not, however, exclude the interaction between the field and the 

medium by means of the four-dimensional ponderomotive volume moments which may 

be produced by the asymmetry of the energy-momentum tensors of the field and the 
medium. If the fulfilment of condition (2.6) holds which, as shown below, restricts the 
form of dependence of the function of internal energy density on the arguments given 

above is notspecified, then for the given arguments of the internal energy and for any 

arbitrary dependence of the internal energy function on its arguments, it is necessary to 
consider the momentum equations which can be used to determine the changes in the 

internal momenta of the medium. 
Let us consider the following decompositions of the combined tensor of the energy- 

momentum of the field and medium into the energy-momentum tensor of the field and 
the energy-momentum tensor of the medium, according to Minkowski and Abraham, 

respectively pik -;: T_$k + sik _ TAi” + Aik 

Here, in accordance with equality (1.8), T$ and Tz = T$ are the known Minkowski 

and Abraham energy-momentum tensors of the medium. Using (1.8) and (2.3) we ob- 

tain, respectively, 

(2.7) 

au 
P2yjp *ix: + p -t!& qkgiP + puuiuk 

j 
ik 

TA 
= pik _ Aik z TMik + Q ik (Qik = sik _ Aik) (2.8) 

In the general case for the same combined energy-momentum tensor of the electro- 
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magnetic field and medium with components Pit , from condition of symmetry (2.6) 
and the relations (2.3) and (2.8) follows the inequality 

From (2.2) together with the particular fundamental assumption (2.6) and (2.7). it 

follows that for the specified internal energy arguments in the case when the electro- 

magnetic field is assigned the ~~ow~i ener~-momentum tensor, the specified func- 
tion of the internal energy density must satisfy the relations 

P +!$ cxjkg’p _ xjfg”p) = hik 

j 
which, by using the equations of state (first relation of (1.6)), can be rewritten in the 

- xjggkp) = $ ($pgn” - $Pgin) (2.9) 

If Eq (2.9) does not hold.the combined ener~-momentum tensor Pik ofthe electromagnetic 
field and medium is asymmetric, which in the general case, implies the presence in the 

system field-medium of four-dimensional, intrinsic momenta which vary along the 

world lines. We note that the tensor equation (2.9) can be written in the form of a sys- 

tern of six independent equations if the pair of free indices (i, k) passes through the 

values: (1,2), (1,3), (2,3), (1,4), (2,4) and (3.4) and if at the same time this system 
of partial differential equations is involutory. 

3, Some fmp~fcrtfonr following ftom the rr8umptfon of rym- 
mstry of tbs combined tenilot of the 616ctrom~gn6tfc fisld and 
medium 6~a:gy-momoatum, The tensor equation (2.9) obtained on the assum- 
ption that the combined tensor of the electromagnetic field and continuum energy- 
momentum (2.6) is symmetric, imposes restrictions on the form of the dependence of 

the function of internal energy density on its arguments, i.e. restrictions on the form and 

number of constants Kg (E’*) specifying the geometrical and physical properties of the 
medium. Below we consider models of certain continua satisfying (2.9). 

3.1. let us consider the model of a medium defined by the form of the internal ener- 

gy and assume that the internal energy constants Kg (E’*) contain only one tensor Go 
with covariant components gij” = gij” (Et) which is the metric tensor of the initial 

state and may, in particular, coincide with the metric tensor of the observer’s system 
with all remaining constants Rn being scalars (such a medium may be called isotropic). 

With the above assumptions concerning the internal energy constants Kn we find that 
for the given set of the internal energy arguments, the components of the antisymmetric 
tensor .ii yield only the following two, functionally independent invariants, which are 

solutions of (2.9) : . . 

dfxkng&jn 

5Eik51gm51rsnnPgirgrcngQsgmp 

In~~ucing the fog-dImensiona symmetric “deformation” tensor E described in 
&YJ with its covariant components defined by 

Eii = ‘12 (Xi”Z/‘g,, - g;j') 

we can ascertain by direct test that any scalar function of the tensor components Eij 
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is a solution of equation (2.9). It can also be directly verified that any scalar function 
of the second rank tensor R symmetric with respect to indices p and p 

is a solution of the tensor equation (2.9). Using the assumptions made about constants 
Kg (Ep) we find that the components of tensors E and R can be formed into twelve 

independent invariants which can be used as the arguments of the internal energy. Thus 

the function of the internal energy density which satisfies (2.9) represents an arbitrary 
function of two invariants of the polarization-magnetization tensor, of the invariants of 
the tensors E and R, of the density p and of the entropy S. If we restrict ourselves 
to the following set of arguments of the internal energy density: Eij, dj, p, gij, S 
and Kg, then from equation (2. 9) we directly obtain the equality hij = 0. 

3.2. As a particular case of the general model of an elastic body with polarization 
and magnetization effects taken into account, we consider the model of a continuum 

whose internal energy density depends on the following arguments: 

U1, nii, p, S, gij, KB 

For this set of arguments the expression for the combined tensor of the electromagnetic 

field-medium energy-momentum is of the form 

pi’ = Sik - f F,,pl)Pgik + + Fp7pPqg*ik + 

p $ukg*ij _ p2?..$__g*ik + p/Juiuk 

(3.1) 

In this case the assumption that the combined energy-momentum tensor (3.1) is sym- 

metric, leads to the following differential tensor equation for the function of the internal 
energy density 

s(ukgij _ uigjk) = f.$ (nipgnh‘ _ akpgni) 

Assuming that the constants Ku do not include any tensors, we can show that the 

internal energy density is an arbitrary function of the following invariants formed from 

the tensor arguments ni’ and uj: 

UiUjgij, Tt3JCknggikgi,, 

~ik~qm~rs~npgirgk~g~~~g~p 

as well as of the density p , and entropy S. We further assume that the function U of 
the internal energy density is a quadratic form in the polarization-magnetization tensor 
sr (i. e. terms of the order of smallness higher than second can be neglectedj 

j%ijnqkgiqgjk + 

p (E2T(:)(CL ““‘1, ~ij~q’UmUng+,,g~ngj~ + j (p, UiUJ’gij, S, KB) 

Here 1~ is the magnetic permeability coefficient and E is the dielectric permeability 
and they can either be constants,or dependent on, e. g., temperature T and density of 
the medium p , and j is an arbitrary function of the arguments shown. The first two 
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terms contain p as a multiplier. This is due to the choice of the usual notation for the 

internal energy arguments* which include the ~l~ization-magnetization tensor 31 eom- 
puted for a unit mass of the medium. 

With the function of internal energy chosen in this manner, the equations of state for 
the electromagnetic field in the medium assume the form 

In the intrinsic coordinate system these relations reduce to 

B=pH, D = EE 

Here B and D are the tee-dimensional magnetic and electric induction vectors, 

respectively, while H and E are the magnetic and electric field intensity vectors 

computed in the intrinsic coordinate system. 

3.3. Let us consider the models of the continua in which the set of constant parame- 
ters Kn includes the tensors describing the anisotropic properties of the material. As an 

example, we shall consider the continua possessing piezoelectric properties, determined 
by the mixed quadratic terms of the deformation tensor and the internal energy polari- 
zation-magnetization tensor, i.e. by terms of the form 

(3.2) 

Here we assume that the internal energy arguments are 

First we consider the tensor equation (2. 9) which holds in any inertial coordinate sys- 

tern. In particular (2.9) holds in the intrinsic coordinate system in which the internal 
energy arguments are determined with respect to an intrinsic coordinate system, which 
may, e. g., be Cartesian without loss of generality. When the inertial coordinate system 
is chosen in this manner we find that for the media with piezoelectric properties only, 
in the intrinsic coordinate system we have nlfi = 0. 

Let us establish how many linearly independent tensor coefficients 

K,, = -_Kji = DiiwLnEmn 

are admitted by (2.9). Substituting the function (3.2) into (2.9)‘ we obtain a system of 

six linear homogeneous equations for the six components of the antisymmerric tensor 
Rij. The rank of the matrix of the principal determinant of such a system is four. there- 

fore the components of the tensor Kij contain just two linearly independent components, 
In a similar manner we can obtain the number of linearly independent components in 

the tensor coefficients accompanying the higher order terms with respect to the polari- 
zation-magnetization tensor. 

This work was supervised by L. I. Sedov to whom the author is deeply grateful. 
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The propagation of small amplitude waves trough a non~nducting, isotropically 
magnetizable medium is studied, and simple wave equations obtained. Simple 
waves in an ideal magnetizable gas are studied in detail. The problem of stabi- 

lity is considered for the ideal gas and a magnetizable fluid, and the parameter 
values for which the wave phase velocities become imaginary are determined. 

The motion of a medium which does not conduct current but can be isotropically and 

nonuniformly magnetized in an external magnetic field I can be described by the fol- 

lowing system of equations [I] 

$- + divpv = 0, pT & (s + s*) = rik 2 i_ h”AT 
k 

Pg -t- V (P i- 9) - MVlCI = qtAv + (Q + -$- Q) V div v 

div B = 0, divE = 0 

aB 
c rot E, 

alx 
at=- Eat = c rot H 

E = H -+ hM(p, T, H)H/flr, P = P(P, s), T = T (P, s> 

Here Q is the viscous stress tensor ; A”, qr and ~a are constant coefficients of heat 

~nductivi~, first and second viscosity, respectively ; M (p, T, H) Z+E (~zE)-~ (p - 
1) H is a function of magnetization (assumed known), p = p (p, T, H) is the mag- 
netic permeability of the medium, the dielectric permeability E is constant and free 
charges are absent. 

The propagation of small amplitude waves in such a medium can be described by the 
following system of seven equations : 

(i, k = 1, 2,. . .7) 

u1 = pfi us =s’, us s v,‘, uq EYE But, ug 3 I&‘, us z.z iTu, u7 E E,’ 

Here u1 denote perturbations of the variables and the matrices I/ xi k (/ and 11 di k 11 have 
the following nonzero components : 


