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A model of a continuum is constructed, using the variational equation suggested
in [1, 2] which makes it possible to obtain models of continua using a minimum
number of unified physical hypotheses, In the present paper the variational equa«~
tion is used to obtain a system of equations defining the macroscopic motion of

a continuum with polarization and magnetization effects taken into account,
within the framework of the special relativity theory, Use of the four-dimen~
sional space-time and special relativity theory i3 required in order to match
theories of electromagnetism and mechanics, We investigate some of the con=
sequences of two possible decompositions of the total energy-momentum tensor
of the electromagnetic field and the continuum into the continuum energy-
momentum tensor and the electromagnetic field energy=-momentum tensor accor=
ding to Minkowski and to Abraham, respectively, When moment stresses and
external mass moments are absent in the medium, we assume the symmetry of
the total energy~momentum tensor of electromagnetic field and medium (this

is equivalent to the absence or constancy of the combined electromagnetic
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field and medium, intrinsic internal moments of momenta along the world lines)
and on this assumption consider certain models of continua,

1, Basic equations, Asthe basis for obtaining a consistent system of equations
comprising the Maxwell equations and the equations of continuum mechanics, we use the
variational equation in the form [1, 21

8 \ Adv, + 8W* W =0 (1.1)
Ve
where V, denotes an arbitrary four-dimensional volume of the pseudo~Euclidean Minw
kowski space~time, whose volume element

dty = V——? drldz*dz?dzt, g = det | gi;]

Here A is a Lagrange function which is a four-dimensional scalar, §J/* is a function=
al specified below, §TW is a functional which is determined by specifying A and dW¥
and g;; are the covariant components of the metric tensor of the observer's inertial co-
ordinate system in a four~dimensional pseudo-Euclidean space. Further, as the four-
dimensional Cartesian coordinate system we choose a coordinate system withthe metric
ds? = — (dz1)? — (dz?)? — (dz®)® + c*df® where c is the speed of light in vacuo
and ds is an element of the arc length in the four-dimensional pseudo-Euclideanspace,
Unless otherwise stated, here and in the following, the lower case Italics indices assume
the values 1, 2, 3, 4, the lower case Greek letter indices assume the values 1, 2, 3 and
surnmation is performed over identical upper and lower indices,
Let us specify the total Lagrangian A of the electromagnetic field and continuous
medium, in the following form:
!
A=— 15
Here z;i = dzi(E¥)/ 08" xi = zi(E¥) is the law of motion of the medium, while !,
E2, B3, E* = 1 are the coordinates of points of the medium in a coordinate system fro-
zen into the continuous medium and moving with it, [In what follows this system is
called "intrinsic"]. In this coordinate system the metric is determined by

. miaei A o ek
ds® = gidE'dE’, gi; = gi; (§')

The superscript ~ denotes tensor components relative to the coordinate system and /';5

denote covariant components of the four-dimensional tensor of an electromagnetic field

in the medium, These components are connected with the components of the four-
dimensional vector potential A, by the formulas

Fik = ViAh - VkAi

FisFy -+ FuP™ — U (p,5% w9835 S, Kp)  1.2)

~

where V, is the covariant differentiation operator in the observer's coordinate system,
P denote the components of the polarization-magnetization tensor computed for a
wnit volume of the medium, n¥/ = p P by definition, where n%/ are the compon«
ents of the polarization-magnetization tensor computed for a unit mass of the medium
and p is the medium mass density defined by the formula

p = f(E") [det]gap — uaup ™ (1.3)
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Here u; are the covariant components of the four-velocity vector of the medium rela-
tive to the observer's coordinate system computed in the comoving coordinate system
(the four-velocity vector is determined in the inertial coordinate system by its compo=
nents u! = (d 2¥/d%);k_gonst) o S is the entropy per unit mass of the medium and U is
the internal energy of a unit mass of the medium,

Let us introduce the quantity p, denoting the medium free electrical charge density

pe = ¢ (%) [det | gz — uiugfl™e (1.4)

In accordance with the definition of the free electrical charge density and of the four-
velocity vector of the medium, the quantity p,u* represents the electric current asso-
ciated with the motion of the continuum relative to the observer's coordinate system,

In accornace with the definition (1, 3) of the mass density ¢ and the definition (1.4)
of the free electrical charge density p, of the medium, the scalars p and P, satisfy, in
the observer's coordinate system, the four-dimensional equations of continuity

Vi (ou) = 0, y;(pui) =0

In the Lagrangian (1, 2) the four-dimensional invariant — (16m)1F;;F¥ is the
Lagrangian of the electromagnetic field and the term !/, F;;Pi/ determines the inter-
action between the electromagnetic field in the medium and the medium®s polarization
and magnetization intensity,

Let us determine the variations of the defining parameters of the model consistent
with the definitions of variations adopted in [1, 2]. (The vector and tensor variations
introduced below are transformed from one coordinate system to the other by the same
laws which govern the transformation of respective vectors and tensors undergoing varia-

tions .
‘ bat = ¥ (8%) — ot (89
84y = Ay (B — Ax (BY)
il = i’ (B%) — ni’ (E)
85 = 5" (B — S (&)
In this case variations of the remaining quantities appearing in the basic variational
equation (1,1) are expressed in terms of parameter variations introduced above by the
following relations: ;
8 BF,; — VidA; — VA, — Vid,; Vida* + Vad, V,oz*
63?}“1 = xjs Vsél'i
dul = g *uiVdz*
dp = —pgp*iv bz*
8Pl = p8ail — P g, ¥V bz
8dr, = dt,V,;bxi
gt = g’ — uin?
The raising and lowering of indices is performed everywhere with the use of the metric
tensor of the observer's coordinate system with the covariant components g;;, and K;(&*)
are the physical constants which define properties of the medium (such as anisotropy,

dielectric permeability, etc, ),
We further assume that 8K 5 = 0. The functional 8W™* is chosen in the form
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oW =\ (o788 4 *64, 4 j*AV 821 — F.dai} dr,
Vi

j* =&+ pe*

where j¥ are the contravariant components of the four-dimensional electric field vec-
tor and {* are the components of the electrical conduction current,
The form of the functional 8W* was specified on the following considerations.

1°, The functional dW* must include terms representing the work done by the
volume forces F, over possible displacements which are outside the system electro-
magnetic fieldemedium, This work is defined by the term F_ 8z* which in §W* appears
with a minus sign, The reason for the minus sign there is that vector components in the
four-dimensional pseudo-Euclidean Minkowski space, for which we shall use the notation
(— — — +) with the metric given above, are related to those in the three-dimensional
space in the case when the coordinate system is Cartesian, by the following expressions
(the notation (- -+ +) means that the vector components are computed relative to a
coordinate system in a three-dimensional Euclidean space):

Py = Fagpppy = = Fapy
and consequently

6z2*

a
Folppp ¥ = — Fa

Moreover we shall assume that the external (relative to the system electromagnetic
field-medium) mass mements are absent (otherwise the expression for §W* would
have to contain a term representing the work done by the external mass moments on the
possible rotations), The three- and four-dimensional components of the vector 4; have
the same properties,

2°, The functional 8W* includes the term F 024, representing a possible external
flux of energy other than heat, to the system electromagnetic field=medium, The ex-
pression for §W* also includes electric current terms which depend on the magnitude
of the uncompensated heat increment 4Q’ due to the dissipation effects,

Performing the variations in (1.1), taking into account {in accordance with (1, 2)) the
assumption made about the arguments of the internal energy and assuming that the vari-
ations 8A;, dni/, 85 and Ox! are independent, we obtain Euler equations in the form
of Maxwell equations for the electromagnetic field within the medium

V,HY = 4ot _ (1.5)
Hij — i — 4a PV

equations of state for the electromagnetic field in the medium and the temperature

, ou oy
i o T s (1.6)
and equations of momentum
Vkpih. = Fi (1‘ )

In the observer's coordinate system the following formulas representing the general-
ized equations of state are valid for the components of the total energy~momentum
tensor of the svstem field=-medium - (1.8)

. . 1 1 *i 1 ad *;
PF — 8 — = Fp PP + 5 Fro PP + p P i — p? B0 gi -+ pUuu*

J
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1 1
Sik e ’Z:TT-(_ (Hka’ip b THqupqéjk)

Here the derivative @ / dz;* i¢ taken with respect to the arguments ;i appearing in
the expression for the internal energy independently of the density p, and S;* are com-
ponents of the energy-momentum tensor of the electromagnetic field in the Minkowski
space,

Computations made in the process of varying (1,1) show that in the region of conti~
nuous motions the following formula holds for the functional W :

W — S {P;‘{sxi o HY (34 + A,,V,;(‘Sg:”)} n, dos
where ny is the four-dimensional unit vector normal to the three-dimensional surface
23 bounding the volume V,.

The system (1, 5) — (1. 8) is established on the assumption that the internal irreversible
effects determined by the expression for functional §W*, depend only on the presence
of the electric current, When irreversible effects produced, e, g, by the irreversibility of
the process of medium deformation or by the irreversibility of the magnetization process
are considered, it is necessary to include in the expression for 8 W* additional terms
describing these effects, To close the derived system of equations we must introduce a
relation representing the Ohm’s law or its generalization which, e, g, , for an isotropic
medium, may have the form - - '
i = —oF U aF " Fpu
where ¢ is the coefficient of electrical conductivity of the medium and o is a coeffi~
cient determining the Hall effect,

2, The electromagnetic field energy~momentum tensor and the
ponderomotive forces, We adopt, after Minkowski, the following definition for
the components of the ponderomotive force vector

Foft = — v;8% (2.1)

In this case the tensor components of the four~dimensional ponderomotive volume mo=-
mentum excercised by the electromagnetic field on the medium are given by [1]

hil = — (Sii — S.?'i) (2,2)
In the four~-dimensional Cartesian coordinate system with the metric given above we
have §*8 = §_,, §% = — §} and §* = — §%. We also note that all relations

obtained in Sect, 2 are valid only in the intrinsic coordinate system, by which we under~
stand the inertial coordinate system, and are chosen for each point M (1, £2, &%) of the
moving continuum so that at each instant of time 1 the three-dimensional velocity v
of the point M is equal to zero in that coordinate system,

As we know [1, 3] the Minkowski electromagnetic field energy-momentum tensor
and the Abraham energy-momentum tensor are linked, in the Cartesian inertial coordi=
nate system relative to which the medium is at rest, by the following formulas:

a 1 a x
A% = — (8% 1 %% (2.3)
Acu; — A&l :Sz;a , A% 844
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from which it follows that the energy fluxes from the electromagnetic field to the me«
dium computed in accordance with both the Minkowski and the Abraham hypotheses,
are the same

Fpt=Fpt 2.4)

For the components of the ponderomotive force tensor we assume, in accordance with
the Abraham hypothesis, that .

ypo » F— _ V4% (2.5)

Then from (2.1) and (2. 5) it follows that in the Cartesian coordinate system the follow=
ing relations are valid: _ a 1 @i 1 9
— X gpe 1 9 ya

Fa = Fu o Vil = ar
where the derivative with respect to time is taken in the intrinsic coordinate system,
The formula defines the relation between components of vectors of the ponderomotive
body force computed in accordance with the Abraham and Minkowski hypotheses,

As we already indicated, we shall further consider the models of media in the case
when i i

zi, W, 0, gijy S: Kp

are used as the internal energy arguments, If we assume that the combined energy-
momentum tensor of the medium and field is symmetric, i. e,

pi* — pit (2.6)
then the stated condition is equivalent to the four-dimensional momentum equation
being identically satisfied under the condition that the sums of the characteristic intrin-
sic internal moments of the field and the medium are constant, or vanish along the
world line, This does not, however, exclude the interaction between the field and the
medium by means of the four-dimensional ponderomotive volume moments which may
be produced by the asymmetry of the energy-momentum tensors of the field and the
medium, If the fulfilment of condition (2, 6) holds which, as shown below, restricts the
form of dependence of the function of internal energy density on the arguments given
above is notspecified, then for the given arguments of the internal energy and for any
arbitrary dependence of the internal energy function on its arguments, it is necessary to
consider the momentum equations which can be used to determine the changes in the
internal momenta of the medium,

Let us consider the following decompositions of the combined tensor of the energy=~
momentum of the field and medium into the energy-momentum tensor of the field and
the energy~momentum tensor of the medium, according to Minkowski and Abraham,

respectivel ; ; : : ;
pe y Pt TMm + Slk — TAﬁc 4 Atk
Here, in accordance with equality (1, 8), T}\’; and Ti’{ = T’f} are the known Minkowski

and Abraham energy-momentum tensors of the medium, Using (1. 8) and (2. 3) we ob=-
tain, respectively,

Ty" = — ‘};"qupmgik + %_qupmg*ik — @7
8U i U i i
P* = 8" 4 mejkg P4 pUuiu®

2
Ty = PF A% = Ty Q% (QU = S A (2.8)

In the general case for the same combined energy~momentum tensor of the electro~
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magnetic field and medium with components Pi , from condition of symmetry (2, 6)
and the relations (2. 3) and (2. 8) follows the inequality

T(’Lk) + Q(‘”C) T ik # T(\ljh)

From (2. 2) together with the particular fundamental assumption (2.6} and (2, 7), it
follows that for the specified internal energy arguments in the case when the electro-
magnetic field is assigned the Minkowski energy-momentum tensor, the specified func~
tion of the internal energy density must satisfy the relations

ou i
o7 (2" —z;'g"") = '
j
which, by using the equations of state (first relation of (1,6)), can be rewritten in the

form
au

axj

(:c, g:p z; gkp) (ﬂngnk nkpgin) (2.9)

IfEq (2.9)does not hold,the combined energy-momentumtensor Pi% of the electromagnetic
field and medjum is asymmetric, which in the general case, implies the presence in the
system field=medium of four-dimensional, intrinsic momenta which vary along the

world lines, We note that the tensor equation (2, 9) can be written in the form of a sys=
tem of six independent equations if the pair of free indices (i, k) passes through the
values: (1, 2), (1, 3), (2, 3), (1,4), (2,4) and (3, 4) and if at the same time this system

of partial differential equations is involutory.

S, Some implications following from the assumption of sym-
metry of the combined tensor of the electromagnetic field and
medium energy=momentum, The tensor equation (2, 9) obtained on the assum-
ption that the combined tensor of the electromagnetic field and continuum energy=
momentum (2, 6) is symmetric, imposes restrictions on the form of the dependence of
the function of internal energy density on its arguments, i, €, restrictions on the form and
number of constants K (8*) specifying the geometrical and physical properties of the
medium, Below we consider models of certain continua satisfying (2, 9).

3.1. Let us consider the model of a medium defined by the form of the internal ener=
gy and assume that the internal energy constants K (§*) contain only one tensor G°
with covariant components g;;° = g;;° (§F) which is the metric tensor of the initial
state and may, in particular, coincide with the metric tensor of the observer's system
with all remaining constants Kp being scalars (such a medium may be called isotropic),

With the above assumptions concerning the internal energy constants Kp we find that
for the given set of the internal energy arguments, the components of the antisymmetric
tensor i’ yield only the following two, functionally independent invariants, which are

solutions of (2, 9): ”ﬂ g g
ikSIn

T NG 1€ en 0o
Introducing the four~dimensional symmetric "deformation” tensor E described in
[2] with its covariant components defined by

Eiy=1 (2" gmn — &i)

we can ascertain by direct test that any scalar function of the tensor components E;;
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is a solution of equation (2, 9). It can also be directly verified that any scalar function
of the second rank tensor R symmetric with respect to indices p and ¢
Rap = Rpg = 090" 2,100

is a solution of the tensor equation (2, 9). Using the assumptions made about constants
Kp (E*) we find that the components of tensors E and R can be formed into twelve
independent invariants which can be used as the arguments of the internal energy, Thus
the function of the internal energy density which satisfies (2. 9) represents an arbitrary
function of two invariants of the polarization~-magnetization tensor, of the invariants of
the tensors E and R of the density p and of the entropy S. If we restrict ourselves
to the following set of arguments of the internal energy density: £;j, n¥l, p, g5, S
and Kp, then from equation (2, 9) we directly obtain the equality A¥ = 0,

3.2. As a particular case of the general model of an elastic body with polarization
and magnetization effects taken into account, we consider the model of a continuum
whose internal energy density depends on the following arguments:

7 ij
w, n,p, S, gij, Kn

For this set of arguments the expression for the combined tensor of the electromagnetic
fieldemedium energy-momentum is of the form

ik ik 1 i 1 ;
PP =g _TquprI‘glk'*'Tquppqg*k‘}“ 3.1)
oU " , ;
p o ukgH — pz%g*m 4 pUuiuk

In this case the assumption that the combined energy-momentum tensor (3,1) is sym-
metric, leads to the following differential tensor equation for the function of the internal

energy density o

au’
Assuming that the constants K p do not include any tensors, we can show that the

internal energy density is an arbitrary function of the following invariants formed from
the tensor arguments 7T and u’:

uiigi,  TWITTgugn

S

TP U UGy B i
as well as of the density p ,and entropy S. We further assume that the function U of

the internal energy density is a quadratic form in the polarization-magnetization tensor
7 (i.e. terms of the order of smallness higher than second can be neglected)

oU

(W — g™ = S (g — )

4| Li
U=p Tx——pT ninthg; g +
25 (1 —ep)
e—1)p—1)
Here pu is the magnetic permeability coefficient and e is the dielectric permeability

and they can either be constants,or dependent on, e, g., temperature T and density of
the medium p,and f is an arbitrary function of the arguments shown, The first two

o o
TIRPUTUE imE qn&it + [ (0, 485 S, KB)
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terms contain p as a multiplier, This is due to the choice of the usual notation for the
internal energy arguments, which include the polarization-magnetization tensor X com-
puted for a unit mass of the medium,

With the function of internal energy chosen in this manner, the equations of state for
the electromagnetic field in the medium assume the form

iy = “‘12— 9{% (@™ g™ — gip™gi™) +
4t

1—% (Buxkslty — gipuiity, + gﬁpuiuk"“g‘ipujuk)} kP

In the intrinsic coordinate system these relations reduce to

B:ZHH, D =¢cE
Here B and D are the three-dimensional magnetic and electric induction vectors,
respectively, while H and E are the magnetic and electric field intensity vectors
computed in the intrinsic coordinate system,

3,3, Let us consider the models of the continua in which the set of constant parame-
ters Kp includes the tensors describing the anisotropic properties of the material, As an
example, we shall consider the continua possessing piezoelectric properties, determined
by the mixed quadratic terms of the deformation tensor and the internal energy polari-
zation~-magnetization tensot, i,e, by terms of the form

y
DynE ™ (3.2)
Here we assume that the internal energy arguments are
Eii’ v, p, & S, KB
First we consider the tensor equation (2, 9) which holds in any inertial coordinate sys
tem, In particular (2, 9) holds in the intrinsic coordinate system in which the internal
energy arguments are determined with respect to an intrinsic coordinate system, which
may, e. 8., be Cartesian without loss of generality., When the inertial coordinate system
is chosen in this manner we find that for the media with piezoelectric properties only,

in the intrinsic coordinate system we have n*® = (),
Let us establish how many linearly independent tensor coefficients

Ki; = —Kj; = Dij""Emn

are admitted by (2. 9), Substituting the function (3, 2) into (2, 9), we obtain a system of
six linear homogeneous equations for the six components of the antisymmetric tensor
K;;. The rank of the matrix of the principal determinant of such a system is four, theres
fore the components of the tensor K;; contain just two linearly independent components,

In a similar manner we can obtain the number of linearly independent components in
the tensor coefficients accompanying the higher order terms with respect to the polari-
zatione-magnetization tensor, _

This work was supervised by L. 1, Sedov to whom the author is deeply grateful,
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The propagation of small amplitude waves through a nonconducting, isotropically
magnetizable medium is studied, and simple wave equations obtained, Simple
waves in an ideal magnetizable gas are studied in detail, The problem of stabi=
lity is considered for the ideal gas and a magnetizable fluid, and the parameter
values for which the wave phase velocities become imaginary are determined,

The motion of a medium which does not conduct current but can be isotropically and
nonuniformly magnetized in an external magnetic field, can be described by the fol-
lowing system of equations [1]

a . v,
-(%—}—dlvpv: 0, pT-;t—(sv{—s*) = Tik_a%+7”oAT @

d
b + V(P + ) — MVH = nAv + <n2 + —.}-nl)Vdivv
divB=0, divE—0
B

aE
< = —c¢rotE, e—— =crotH

B:H‘{”én‘w(paT:H)HlH’ pzp(p,s), T:T(p,s)

o= (o) Jam e 1§12 )

0 0

Here Ti; is the viscous stress tensor; A°, 1), and ), are constant coefficients of heat
conductivity, first and second viscosity, respectively; M (p, T, H) = (4n)™ (u —
1) H is a function of magnetization (assumed known), u = p (p, ', H) is the mag-
netic permeability of the medium, the dielectric permeability € is constant and free
charges are absent,

The propagation of small amplitude waves in such a medium can be described by the
following system of seven equations:

du, Ju %
] k [y .
Tt o = degm (k=127 @

e pr—— — ’ J— H _ 7 — £ J— ’
Uy =9, ugzs, Ug =Vy u4:BU, u‘:,:Bz, MG:E'LH u-‘v._—_.Ez

Here u; denote perturbations of the variables and the matrices |Z;z| and | d;x | have
the following nonzero components:



